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Two transient dynamic contact problems involving the penetration of a rigid punch into an elastic half-space are considered. In 
the first problem the punch is wedge-shaped, in the second, a paraboloid. The problems are solved by a method developed in 
previous publications [1, 2]. The requirements imposed on the smoothness of the solutions of the problems lead to additional 
conditions, due to which the width of the contact area between the punch and the elastic half-space, which varies with time, is 
determined as a function of time and of the law governing the penetration of punch into the elastic half-space, which is determined 
from the differential equation of motion of a massive punch on the elastic half-space. © 2004 Elsevier Ltd. All rights reserved. 

Solutions of mixed problems of the theory of elasticity in which the curve, where the boundary conditions 
are changed, varies with time, have been considered in analytical form in several publications [3, 4, etc.]. 
A detailed bibliography of the class of problems is given in [5]. 

1. F O R M U L A T I O N  OF T H E  P R O B L E M S  AND 
T H E I R  I N T E G R A L  E Q U A T I O N S  

We will consider transient dynamic contact problem of the penetration of a rigid punch into an elastic 
half-space (-~, < x < ~, y ___ 0) for the case of a wedge-shaped punch (problem 1) and a paraboloid 
punch (problem 2). The penetration of the punches into the half-space occurs along the y-axis (x = 0), 
which is their axis of symmetry. The initial velocity of the punches is x)0, the mass per unit length of 
each in rn, and the half-width of their contact area with the elastic half-space is a(t), a positive-valued 
function of the time t. There are no forces of friction and adhesion in the contact area of the punches 
with the elastic medium. The shape of the punches and the law governing their penetration into the 
elastic medium are given by the function g(x, t) (t > 0, Ix[ < a(t)). In the case of a wedge-shaped punch 
(problem 1) this function has the form 

g(x, t) = e(t)-011xl,  01 = ctg0~ (1.1) 

where 2o~ is the angle of the wedge and e(t) is the law governing its penetration into the elastic medium. 
In the case of a paraboloid punch (problem 2) the function is 

g(x, t) = e ( t ) -  02 x2 (1.2) 

where 02 is a parameter characterizing the flatness (slope) of the parabola-shaped punch, which has 
the dimensions of m -1. 

At the initial instant of time the elastic half-space is at rest and therefore the displacements of the 
elastic medium u = u(x, y, t) and x) = x)(x, y, t) and their velocities vanish at t = 0. 

The boundary conditions of the two problems in the standard notation of the theory of elasticity 
[6, 7] have the form (t > 0) 

v(x,  O, t) = g(x, t), Ix[ <a (1.3) 

{Jyy(X, O, t) = O, a <~ IXI < ~'~ (Yxy(X, 0, t) = 0, Ixl < oo (1.4) 
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where cyyy, ~xy are the normal and shear stresses. At infinity (as ~ + y2 ___> m ) the stresses and displace- 
ments in the elastic half-space vanish. 

By successive application of Laplace transformations (with respect to time x) with parameter p and 
Fourier transformations (with respect to the x coordinate) [8] to the differential equations of the theory 
of elasticity [6, 7] and to boundary conditions (1.3) and (1.4), taking into account the conditions at infinity 
and zero initial data, problems 1 and 2 can be reduced to the solution of an integral equation of the 
first kind in non-dimensional form [1, 2] 

1 

-1  

Ixl a (1.5) 

k(t) = IK(u)eiUtdu, K(u)  = 2 ( 1 - ~ 2 ) ~ 2 R - l ( u  ) 

F 

(1.6) 

R(u) = (2u2+ 1)2-4u2tjllJ2; IJ 1 = u ~ + l ,  

c 2 c 2 ~ +  21 x 
A = - - ,  ~ = - - ,  c 1 = 1  , C2=. 4p pa c l 'V P 

(1.7) 

where @(x, p) is the Laplace transform of cp(x, t), which is the unknown distribution function of the 
/2 2 1 L contact stresses beneath the punch, f(x, p) = Ag (x, p), zX = 2(1 - [3 )pa - ,  and g (x, p) is the Laplace 

transform of the function g(x, t), which describes the shape of the punch and the law governing its 
penetration into the elastic medium (1.1), (1.2) 

gL(x,P) = eL(p)-Olap-llxl, Ix] < 1 forproblem 1 (1.8) 

L .  . ~ 2 -1  2 gL(x,p) = e t P ) - % a  p x ,  Ix] <1 for problem 2 (1.9) 

where eL(p) is the Laplace transform of the function e(t) from (1.1) and (1.2), a = a(t) is the half-width 
of the contact area (a(t) >_ 0), cl and c2 are the velocities of propagation of longitudinal and transverse 
elastic waves of displacements and stresses, )v and IX are the Lam6 coefficients and P is the density of 
the material of the elastic medium. The contour of integration F in the complex plane u = e~ + i-c goes 
from - ~  to + ~ along the real axis ('c = 0) at an angle -argp to its positive direction. 

2. THE SYMBOL OF THE K E R N E L  OF I N T E G R A L  E Q U A T I O N  (1.5) 
AND ITS BASIC P R O P E R T I E S  

The function K(u) (the second equality in (1.6)) - the symbol of the kernel of Eq. (1.5) - is an even 
function and real-valued on the real axis of the complex plane u = e~ + iT. Its asymptotic behaviour at 
zero and at infinity are defined by the following relations 

g ( u )  = lul-I + O(]u1-3) as ]ul -+  ~ (2 .1)  

K(u) = K(0) + 1K"(0)u2. + O(u 4) as u --+ 0 

K(0) = 213(1-132), K"(0) = 213-1(1-9[~2+8~3+8134-8~ 5) 
(2.2) 

In the complex plane u = c~ + i'c the function K(u) has four branch points u = _+i[$, u -- _+i and two 
Rayleigh poles u = -+irl0, determined from the Rayleigh equation R(iu) = 0 [7]. 

For a single-valued representation of the function K(u), the complex plane u -- e~ + i-c is cut from 
the branch point u = i, u = i6 to + i~  along the positive part of the imaginary axis (Ira u > 0) and from 
the branch points u -- -i, u -- -/13 ([3 > 0) to -i~, along the negative part of the imaginary axis 
(Imu < 0). In the cut complex plane u = cs + i'c punctured at the Rayleigh poles u = +_irl 0 the function 
K(u) is analytic, including the strip Jim(u) ] < [3, ([~ < 1 < 110). 
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3. THE A S Y M P T O T I C  S O L U T I O N  OF EQ. (1.6) 

The zeroth term of the asymptotic expansion of the solution of integral equation (1.5), @(x, p), may 
be constructed for small A (large p) according to the formula [1, 2, 9] 

L g l + X  L X 
(3.1) 

where the functions ~p_+/£ (x,p) and q0~ (x, p) are given by the integral equations 

Icpc+_(~, p)k({ - x)d~ = 2xfL(+ Ax :F 1, p)A -1, 0 < x < oo (3.2) 
o 

Icp~({, p)k({ - x)d{ = 21tfL(Ax, p)A -1, _oo < x < 0o (3.3) 
0 

The kernel k(t) (1.6), after deformation of the contour of integration F into the real axis, has the form 

k(t) = I K(u)ei~tdu 

L 1 i fLF(u '  p) -iux , 
cp=(x, p) = ~ ~ e au (3.4) 

where 

fLF(u, p) = 2rt~L08(U)-- 2)LIAau -2, for problem 1 (3.5) 

fLF(u, p) = 2X)~0~(U)- 2~.2A2fi"(u), for problem 2 (3.6) 

where )~0 = 2(1 - ~2)ga-leL(p), ~-1 = -2(1 - 132)g01p -1, )~2 = -2(1 - ~2)ga02p-1 and 8(u) is the Dirac 
delta function in the complex plane of u (primes denote derivatives). 

After computing the quadratures in (3.4), we obtain the problem 1 

I /l A-1 L 1 L 2 K ( O ) f t ( ~ ) e x p ( - r x f ~ ) d ~  + Ixl 
¢p=(x, p) - AK=(0) ~ ( p ) -  c 2  I/I; .I Ja-  

l(u) = I ll(u)-4uz(~l°(y2°l°l(u)' l <_u<oo 
~/I(U), ~-< U < 1 

(3.7) 

2 0  = ~ u  2 1, = ~ u 2 - ~  2 / l ( U )  = (2U2--1)210 I(u)' Io(U) = 2(1-13 ) 20' 13"10 - -  I320 

and for problem 2 

-1 L 1 ~ r. . 02a3_( 2 AzK"(0)']] 
a p) - t p , -  c-S-A x + x-- SJJ (3.8) 

The derivation of (3.7) and (3.8) used the fact that K'(0) = 0 since K(u) is an even function. 

Equations (3.2) are Wiener-Hopf integral equations on the half-axis [10], and (3.3) is a Fourier 
convolution equation on the axis [11]. 

A solution of Eq. (2.3) is found using the integral Fourier transformation, it is given by the formula 
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To solve integral equation (3.2), one can use the standard solution procedure of the Wiener-Hopf 
method [1, 2, 10-12]. Consider Eq. (3.2) for ¢p+r(x, p), extending it to the entire real axis as follows: 

oo 

I L+(~, p)k(~ - x)d~ = 2gfL(Ax- 1, p)A- '  0 ~ x < (3.9) 

0 [2 vL(x,_ p) ,  _ o o < x < 0  

By x)_C(x, p) we mean the integral operator 

p )  _- (3.1o) 
o 

which defines the Laplace transform of the elastic vertical displacements v(x, t) of the surface of the 
elastic medium outside the punch. 

Taking applying an integral Fourier transformation to Eq. (3.9), we obtain the functional equation 

LF A-1 ,.LF , K(u)tp+ (u, p) = a y+ tu, p) + I)LF( p) (3.11) 

LF qJ+ (u,p)= I(pL(~,p)eiU{d~ 

o 

LF f+ (u, p) = f f L ( A ~ -  1, p)ei~'~d~, 
o 

o (3.12) 

for the unknown Laplace-Fourier transform of the function q0+Ce(u, p), which is the Fourier transform 
of the unknown function q~+r(x, p). The functionf)F(u, p) in the case of problem l is given by 

fLF'u " AA-l[-(eL(p)-qlA)(iu)-l+ rllA2(1 2exp(iuA-l))(iu)-e I (3.13) + ( , p ) =  

and in the case of problem 2, 

LF f+ (u, p) = AA-1[ - (eL(p)-~12A)(iu) -1 + 2r12A2(1 + A(iu)-l)(iu)-2J 

Okal  +k -1 r lk= c 2 ,  k =  1,2 
(3.14) 

The functions ~9L+F(u,p) andfL+F(u,p) are regular in the upper half-plane Ira(u) > 0, while vC_F(u,p) 
is regular in the lower half-plane Ira(u) < ~, [3 > 0 of the complex plane u = o + i% and the function 
K(u) is regular in the strip [Ira(u) [ < 13. Assuming that the function K(u) can be factorized [10] 

K(u) = K+(u)K_(u) (3.15) 

where the functions K+(u) and K ( u )  are regular in the upper half-plane (Ira(u) > -[3) and the lower 
half-plane (Ira(u) < [3), respectively, we substitute expression (3.15) into Eq. (3.11) and divide the left- 
and right-hand sides by K._(u). The function thus obtained 

g(u,p) = AK]l(u)f~F(u,p) (3.16) 

may be expressed as the sum of two functions [10], 

g(u, p) = g+(u, p) + g_(u, p) (3.17) 

where g+(u, p) is regular in the upper half-plane (Ira(u) > 0) and g_(u, p) is regular in the lower half- 
plane (Ira(u) < 13) of u = ~ + ix. In the case of problem 1 we have 

2 1 

u÷(., p) = A Z Z ck.(p)G(u) 
k = l n = 0  

(3.1s) 
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Clo(p ) = --(eL(p) -- r 11A(1 + A'~" - 2ATp))A q 

C l l ( P )  = c 2 1 ( P )  = - 2 C 2 0 ( P  ) = -2r l lA 

gko(U) = 1 + k , k = 1,2, gll(u) 
(iu) K_(O) 

exp(i~A -1) d~ 1 

F0+ 

g~l(u) = exp(iuA-1) 7~ = iK~(O) 
2 ' K_(O)' (iu) K_(O) 

and in the case of problem 2 

3 

g+(u, p) = A £ cn(p)g+no(U) 
n = l  

7p = K~----~O) I exp(i~Aq)d ~ 

r0 + ( i t )  K_(~) 

q(p )  = -(eL(p) - i]2a(1 + 2A2]t '_ + 2A3(7' ' + 7'2)))A -1 
(3.19) 

c2(p) = 2TI2A(1+2AT'),  c3(p) = 4112 A2 

1 K"(O) 4" ~/Tt 
g30 ( u )  = 3 ; - - (iu) K_(O) K_(O) 

Formulae for g~-0 (u) andg~-0 (u) are given in (3.18), and the constants qk are given in (3.13) and (3.14). 
The contour of integration F0+ runs in the upper half-plane along the cuts from +ioo to i[~ along the 
imaginary axis (from the right), and from i[5 to +ioo (from the left); the branches for evaluating the 
roots ol and 02 are chosen so that along the sides of the cuts 

4/~--u2+]] 2 = +i u , ~ - ~  2, d - u 2 + l  = + i ~ u 2 - 1  

where the upper sign is taken for the right side and the lower one for the left. Primes denote derivatives. 
As a result of representation (3.17), the functional equation becomes 

LF (p+ (u, p)K+(u) - g+(u, p) = g_(u, p) + 1)Lr (bl, p)K~_l (u) (3.20) 

and in view of the decrease at infinity of all the functions in (3.20) and Liouville's theorem, Eq. (3.20) 
implies two equalities 

LF (p+ (u, p)K+(u) - g+(u, p) = 0 (3.21) 

I)LF(u, p)K-l(b/) -F g_(u, p) = 0 (3.22) 

LF LF for determining % (u,p)  and v_ (u,p).  
The required solution (p+L (x, p)  of Eq. (3.2) is determined by an inverse Fourier transformation of 

(p+LF (U, p)  from relation (3.21) 

~ + i c  

1 g+(u, p)e_iUXdu, c > 0, 0 < x < ~ (3.23) L 
(p+(x,p) = ~ f K+(u) 

-~+ic 

In the case of problem 1, the function g+(u, p) is given by (3.18), and in the case of problem 2 - by 
(3.19). 

Note that relation (3.22) may also be used to determine the second unknown function ~LF (u,p) and 
then, reverting back from the Fourier transform to the original function, we obtain 

1 i -iux vL(x,_ p) = ~ g_(u, p)K_(u)e du, - ~  < x < 0 
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where 
g_(u, p) = g(u, p) - g+(u, p) 

with the function g(u, p) given by (3.16). 
The solution q)L (x, p) of the second equation of (3.2) is identical with q0+ L (x, p) (q~L (x, p) = q~+r (x, p)) 

because, for both problems (1 and 2) under consideration, f(x, t) are even functions of x and 
F L ( + A x -  1,p) = fL(-Ax + 1,p) in (3.2). For the same reason also vL+(x,p) = @_(x,p). 

Note that in order to compute the quadratures in formula (3.23), which determines the solution 
q~C+(x,p) of Eq. (3.2), one has to know the functions K+(u). In the general case, they are given in singular 
quadratures [7], which complicates the analysis of the results and their numerical implementation. 

4. A P P R O X I M A T I O N  OF THE SYMBOL OF THE K E R N E L  OF EQ. (1.5) 

To obtain an effective solution of Eq. (3.2), we replace the function K(u) - the symbol of the kernel 
(1.6) of Eq. (3.2) - by the approximating function Ko(u) proposed in [1, 2]. We have 

2 -1 + _ 
Ko(U ) = , 4 u - + ] J Z ( u 2 + q 0 )  exp[mn(u) + M,(u)] 

n 

1 . 1 +/'] '-+~u 2 k + 2  
M~(u) = 5 ~-~ d k ( ~  - dl  +- iu) 

k = O  

(4.1) 

The constants dk are determined from the conditions of the best approximation of K(u) in the complex 
plane u = ~ + it with the cuts described in Section 2. In that domain Ko(u) is a univalent analytic function. 
Its factorization, that is, representation Ko(u) = K°(u)K°(u), is obtained by elementary means, and it 
turns out that 

KO(. )  _ • i .  _+ 
110 • [u exp[Mn(u)] (4.2) 

The basic properties of the functions Ko(u) and K°+(u) were indicated in [1]. 
From a technical point of view, approximation of the symbol of the kernel K(u) (1.6) by the function 

(4.1) reduces to determining the approximation coefficients dk (k = O, 1, 2, ... , n). They may be 
determined by various classical methods of the theory of the approximation of functions in the complex 
domain [13]. Since the asymptotic behaviour of the function Ko(u) at infinity (as ]u ] ~ ~ )  is identical 
with that of K(u) (2.1), it will suffice to approximate K(u) (1.6) by Ko(u) in a circle centred at the origin. 
Taking the power properties of the functions K(u) (2.2) and Ko(u) (4.1) in the neighbourhood of zero 
(u = 0) into consideration, one can determine the constants dk by using power-series expansions of 
these functions. This leads to the conditions that the functions K(u) and K+(u) are identical with Ko(u) 
and K°(u) and that their respective derivatives are identical at zero, which may be written as follows 
(the superscript j denotes the order of the derivative): 

K(J)(o) = K~J)(o), j = 0, 2 .....  2m (4.3) 

K~)(O) = K°(J)(o), j = 1, 3, 5 .. . . .  2 m -  1 (4.4) 

where necessarily n = 2m, and either the upper of lower plus and minus signs are chosen in (4.4). The 
following properties of the function K°.(u) are also taken into account 

K°+(u) = K°-(-u); ^+"°(J)'u't , = (-1)JK°(J)(-u), J = 1, 2, ... (4.5) 

To ensure the satisfaction of conditions (4.4), one has to determine the functions K~ (0), which is 
readily done by classical means using the formula 

idj)(u ) = X+(u) i IC(oO 2hi K(o~) (~_  u)J" j = 1, 2 . . . .  (4.6) 
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and taking into account the equality 

K+(0) = ~ (4.7) 

Since K(u) is even, we have K(zJ-1)(0) --- 0 (j -- 1, 2, ...) and all the K(+ 2j) (0) are expressed in terms 
of K (2j) (0) and K(+ 2j-1) (0), for example 

K~(0) = - - - L [ ~ K " ( 0 ) +  K'+2(0)J (4.8) 
K+(O) 

The approximation (4.1) for n = 0 has been used previously [1, 2]. Solution of the problems (1 and 
2) formulated here requires a more accurate approximation, since the general formulae (3,23) obtained 
above for the solutions contain derivatives of the functions K(u) and K+(u) at u = 0. For n = 2 
(m = 1) conditions (4.3) and (4.4) become 

0 ! I1 
K(0) = K0(0 ), K'+(0) = K+(0), K"(0) = K0(0 ), (4.9) 

from which we obtain a system of linear algebraic equations for determining the constants do, dl 
and d 2 

d o + bd 1 + bZd2 = b 1 

do + 2bdl + 3b2d2 = b2 (4.10) 

d o + 2beld 1 + 3b2ezd2 = b 3 

in which 

bl = b-lln(2(1 _ ~2)112), b2 = -(213-110 + 21]oJ3C0)(b1]0"f~) -1 

2 2 
b 3 = 413,4c~(41]o-41]o~- 1)(db) -1, 81 = (J3+4,,/~+ 1)d -1, e 2 = (~+6, , f~+  1)d -1 

l~f K'(u) d = (1 +.f~)2, b = (1 - . f~ )2 ,  Co = r~auK(u)dU 
o 

The derivation of relations (4.10) used the derivative of K °(0) for n = 2, evaluated using the formula 

0' +i2J3 - 110 + 1]ob4r~(do + 2bd 1 + 3b2d2)K+(O) 
K+ (0) = _ 21]o13 _ (4.11) 

Calculations have shown that the optimum version of the approximation is that with n - 1, assuming 
that the first and third conditions of (4.9) are satisfied. In that case, in order to determine do and dl, 
one has to set d2 = 0 in the system of linear algebraic equations (4.10) and retain the first and third 
equations, from which do and dl are then determined: 

d o = (2ble2-b3)Ao 1, d 1 = (b3-b l )Ao 1, A o = 2e 2 -  1 (4.12) 

The quantities do and dl evaluated by formulae (4.12) for different values of Poisson's ratio v, are 
listed below 

v 0.10 0.20 0.25 0.30 0.35 0.40 0.45 

d o 8.1762 7.4446 6.9315 6.3164 5.5968 4.7638 3.7701 
d I 49.5091 25.7310 16.8167 9.6998 4.2849 0.5234 -1.5457 

For v ~ [0, 0.48] the approximation error in [K(u) [ is at most 5%, while for v ~ [0.48, 0.49] it is at 
most 6%. The increase in the error v values close to 0.5 is due to the fact that at v = 0.5 (13 = 0) neither 
K;(0)  nor K"(0) exists, as is obvious from relations (2.2) and (4.1). 
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In special cases, an approximation of type (4.1) may be constructed, defining the constants dk on the 
basis of other conditions and other characteristic points, e.g., on the basis of branch points, Rayleigh 
poles, etc. 

5. THE APPROXIMATE SOLUTION OF INTEGRAL 
EQUATION (3.2) 

TO obtain a solution of Eq. (3.2) by formulae (3.23), we will use an approximation to K(u) of the form 
(4.1) with n = 1, in which the coefficients do and dl are defined by formulae (4.12) for any values of 
Poisson's ratio v. Substituting K°(u) from (4.2) for K+(u) in (3.23) and evaluating the quadratures, we 
obtain a solution (pr+(x, p) of the integral equation (3.2) for problem i 

5 7 
-1 L 

A (p+_(x, p) = ~ Clk(p)(plk(X, p) + ~ Clk(P)(Plk(+ Ax + 1, p) (5.1) 
k=l  k=6 

(PlI( x, P)  = knof-~exp(-~x)d ~ 
- , $  

o o  

(Pl2(X, P) = kno~-~exp(-~x)d ~ 
0 

o.o 

2 ! m ( ~ )  x ( - ~ )  j ' ~ e x p ( - r l x ) d r l  
(Pl3(X, p )  = --n2 ~ e p X d~l~ 

2 rl(~)ex ( "]x"d~ (PI4( X, P)  = - -~ J==~  P --q i) 

Cpls(x, p) = 1, (Pl6(X, p )  = X, (Pl7(X, p) = [x[H(+x) 

cu(P) = (eL(p)-rlaA(1 + AT" + 2AT°))A -l, clk = rhA, 

c15(p) = (8L(p)-riIA)(AK(O)) -1, Cl6(P) = K-I(0)TI1A 

Cl7(P) = -c14(P)( AK(O ) ) -l 

o 1 ~m(~) exp(" ~)d~, Tp = ~ j ' - ~ -  ~.-~.) k~o = (~K-(0)) -z 

k = 2 , 3 , 4  

m(~) = 
m~(~), 1 _<g<=, 

m2(~), [~<~<1, 

ml(~)  = Vl (~) exp [~(doO)(~) - dlo)2(~))l 

1 
rn2(~) = ~l(~)exp(-~llt2(~))cos~3(~) 

v~(~) = no -~  ~ ~.}~_~, v2(~) = (1 + i3 -2~)do+( (~ -~ )2 -6 (~ -13 ) (1 -~ )+(1  -~)2)dl, 

V3(~) = ~4~L-~-~ I'4q--Z~(2( I + l~-2~)dl  +do), ¢o(~) = ( ~,,]~--~- ~,,/~i-i) 2 

"/+' = iK'+(O)IK+(O) 

The function l(u) is given by formula (3.7). 
In exactly the same way, the same kind of approximation is used to derive from (3.23) a solution of 

integral equation (3.2) for the case of problem 2 
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6 
-1 L 

A ~+(x, p) = Z C2k(P)tP2k(x'P) (5.2) 
k= l  

tP21(x,p) = q011(x,p), (P22(x,P) = tPl2(X,p), 

tP24(X , p) = 1, (P25(x, p) = x, qo26(x , p )  -- x 2 

q023 (X, P) = knof~-~exp(-~x)d ~ 

C21 (p)  = --(EL(p) -- q2A(1  + 2Ay' + 2(2y'._ 2 + y")))A q 

C22(P ) = 2r lzA(1 +2Ay'_), C23(P ) = 2112 A2 

C24(P) = -Kq(O)(c21(P) + ~/'+c22(P) + (7 + ]t+]2)c23(P) 

c25(P ) = - K - l ( O ) ( c 2 2 ( P ) -  c23(P))'lt"+, c26(P) = -~K- l (O)c23(P)  

y+" = K+(O)/K+(O) 

The quantities 7+, k~0, m({) and ~k(x, p) are given by formulae (5.1), and 7'_ and 7" are given by 
formulae (3.18) and (3.19). 

Note that the solutions of Eq. (3.2) have been obtained in the class of integrable functions that permit 
singularities of the Laplace transform of the contact stresses at the boundary of the contact area at 
points x = _+1, that is, @+(x,p) = m(x,p)(1 -+ X) -1/2, where m(x,p) ~ C[_ 1 11. This feature of relations 
(5.1) and (5.2) is conveyed by the function %~1(x, p) after evaluating the quadrature. In addition, 
q~(x, p) in (5.1) has a logarithmic singularity as x ~ 0, which is conveyed by its function q0~4(x, p). 

6. THE S O L U T I O N  OF PROBLEMS 1 AND 2 

An asymptotic solution of the transient dynamic contact problems formulated in Section 1, for wedge- 
shaped and paraboloid punches penetrating an elastic half-space, is obtained by reverting to the original 
functions from their Laplace transforms, obtained above as asymptotic solutions of Eqs (3.2) and (3.3), 
in Which q0_+c(1 ___ x/A,p) and cp=(x/A,p) are given by formulae (5.1) for problem 1 and by formulae (5.2) 
for problem 2. As a result, the solution of problems 1 and 2 is given by the formula 

( a ( l + x )  t ) + -  ( a ( 1 - x ) ) _ q 0 ~ ( a ~  ) 
~p(x,t) = q0+ c2 , tp_~ c2 , t  , t  (6.1) 

in which qo_+(x, t) and qo~(x, t) for problem 1 are given by the formulae 

2 
A-l~p+(u,t) £ H ( t - "  " -3/2+k= . . -~ pU)U q)lk(U, t) + H ( t -  ~u - t 1 )ul/2(I)13(U, t) + 

k=l  
6 

+ n ( t -  I~u - tll)lI)14(lt,/- t21, t) + ~ H ( t ) ~ l k ( U  , t) + H(t)O17(lu - t21, t) 
k=5 

(6.2) 

A-Igloo(u, t) = t2K-l(O)(~(t) + •(0)) - OlC2H(t- ~U)(I)I4(U, t) -- OlC2K-l(O)uS(t) 

t-~u 

Olk(u, t) = k~o I clk('C)qk(t- Z' u)m*((t-  z)uq)dx' 
f~u 

k = l , 2  

(6.3) 
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where 

t (x-Itu)/t 2 
(I)13(u, t) = - 2 j" J" Cl3('Qql(T,-~t2, u)m,(("c-~t2)u-l)m(~)~-ld~d' t  

tlu 2[. 
(I)I4(U , t) = - ~  ~-21(~)d~, (I)15(U , t) = 1, (I)16(u , t) -- (I)17(u, t) = u 

tit 2 

Cl l ( t  ) = - t2(E(t  ) + E (0 ) )  + "qltzl(a~(t) + 7'_H(t) + 2t21H(t-  t l )  ~ ~ - l m ( ~ ) d ~  

Clk(t ) = rilt21H(t), k = 2, 3,4 

ClS(t ) = t2K-l(o)(E(t) + E(O)) -1] lK-l(0)~(t)  

Cl6(t) = "qlt21K-l(o)~)(t), Cl7(t) = -rllK-l(O)~(t) 

m , (~ )  = ~ m ( ~ ) ,  qk(t, u) = rl°u - t a 
t k~'Jt-~u tk = --'  k = 1,2 C k 

The functions m(~) and l(~) were defined after formulae (5.1) and (3.7), respectively. 
For problem 2, q~±(x, t) and q~(t) take the form 

3 6 
A-lq0±(u, t) = ~ H(t-u~)u-a/2+k~ak(U, t) + ~.~ H(t)c2t(t)~2k(u) 

k = l  k=4  

(6.4) 

A-ltp~(u, t) = t2K-l (o)(~(t) + e(0)) - 02t2a2u2~(t) - 02K"(O)ac2 t) (6.5) 

t-~u 
~2k(Ul, t) = k~o ~ c2k('Qqk(t-'C, u )m , (  ( t - 'Qu-1)d  "C, 

2 
(I~24(U) = 1, (I)25(U) ---- U, (I)26(U) = U 

k = 1 , 2 , 3  

c21(t ) = - t2(~(t ) + £(0)) + 02A(a28(t) + 2a7'_ + c2t(27'_ 2 + it")) 

c22(t  ) = 202a2(1  + 2 t2 ] ( ' t ) ,  c23(t)  = 202c2at 

I I  

C24(t) = _g_l(O)(c21(t ) +, ,+c22(t) + (T~2 + ~+/2)c23(t)) 

C25(t ) = -K- l (0 ) ( t~22 ( t )  - ~23(t))]t'+ 

C26(l) = _K -1(0)~23(t)/2 

In formulae (6.2)-(6.5), as in all previous formulae, the parameter a - the half-width of the contact 
area of the punch with the elastic medium - is a function of the time t, even when it occurs in integrals 
with respect to x. Formulae (6.2)-(6.5) for q~±(u, t) and q~(u, t) cannot yet be solutions of problems 1 
and 2, since they involve singularities of the root type (1 +_ x) -1/2 at the boundaries of the contact area, 
indicating the existence of sources of elastic energy (or discontinuities in the surface of the elastic 
medium) at the boundaries of the contact area. To obtain smooth solutions, bounded at the ends of 
the contact area, the coefficients of the terms (1 -+ x) -1/2 must vanish as x -~ -+ 1, that is, the following 
conditions must hold 
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lim * l , (  a(1 +x),  t) = 0 for problem 1 (6.6) 
x-~+l \ C 2 

lim * 2 f a ( l + x ) , t )  = 0 forproblem 2 (6.7) 
x-~+l \ C 2 

Satisfaction of these conditions yields the following equations defining the half-width a(t) of the contact 
area 

t t/t2 f--- ~. 
a ( , ) =  C f  ~(~.! d ' f -2c2 , '_ t -4c2K_(O)n( t - t l ) , f t  f m ( ~ ) ~ d ~ ,  tk : a 

ck (6.8) 0120 ~ / t - ' ~  13 

k = 1,2 for problem 1 

t 
a(t) = -2y'c2t+C4/-t[ '("C) d'c- 8" ) [ ~ ' -  + )/1/2 

_ ~ 02J0 ~/ t_  ,C ~/'._' for problem 2 (6.9) 

Equations (6.8!2and (6.9) are written in a form convenient to be run on a computer. The constants 
7'_, y'_' and Z- = 4'-/2 + g_' are given below. 

V 0.10 0.20 0.25 0.30 0.35 0.40 0.45 

y2 0.3519 0.3632 0.3600 0.3434 0.2996 0.1894 -0.1502 

y'~ -0.4169 -0.4344 -0.3814 -0.2244 0.1747 1.2602 5.3802 

2-  -0.3550 -0.3684 -0.3166 -0.1654 0.2196 1.2781 5.3915 

It can be seen that the parameters y' ,  y" and Z- are significantly influenced by Poisson's ratio v, and 
consequently the width of the contact area depends very much on the properties of the elastic medium. 
At small t values one has the following estimates of a(t) 

a(t) = 2 (0111)0 -  C27')t + O(t) 

a(t) = 2~vo4Ct + O(t) as 

as t ---) 0 for problem 1 (6.10) 

t ~ 0 for problem 2 (6.11) 

It follows from (6.10) that a necessary condition for the requirement a(t) > 0 to hold is the inequality 

011DO-C2Y'_->O, 01 = ctgt~ 

which implies the validity of the restrictions imposed on the angle 2o~ of the wedge 

2 arctg (c27'_/v0) _< 2ix < n (6.12) 

Formulae (6.10) also implies an estimate for ti(t), the rate of change in the half-width of the contact 
area 

a(t) = 2 ( 0 ; l v 0 - c 2 Y ' _ ) + O ( ~ ) ,  t ~ 0  (6.13) 

It follows from (6.11) that at small t the contact area exists for fairly small opening spans 02 of the 
parabola, and its rate of expansion h(t) admits of the estimate 

~ 0  1 
a(t) = 4 ~ 2 ~ t + 0 ( 1 ) ,  t--~O (6.14) 

whence it follows that at the initial time the rate of expansion of the contact area under a parabolic 
punch is unbounded [5]. 
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To conclude this section, we must note that the solution of problem 1 contains a logarithmic singularity 
with respect to the x coordinate as x -~ 0, generated by the corner point of the wedge and contained 

in (6.2) and (6.3) in the function O14( Ixla, t/. 
\ ¢2 // 

Isolation of the singularity in ~14(u, t) brings it to the form 

lill4(~2a' t) = 11; L -2 [ln Ic't, +" ~ H(' - ~la) + lll~4(~2a' t)] ix a k. 

t/u t/u "~ 

(I)~4(U,/) = t!(~2 d~2 ;2)1/2 "t" Ig(~)d~H(t-~u) 
fgl(U) 1 - < U < ~ ,  g l ( u )  = u - 2 ( l l ( U ) - 4 u 2 t Y l O ( Y 2 0 1 o l ( u ) ) ( Y 2 0  + 1 

g(u) 
][.g2(u) ~ _< U _< 1, gE(U) = u - E l l ( U ) ( Y 2 0  

Expressions for lk(u ) (k = 0, 1) are contained in (3.7). 
If condition (6.9) holds, the solution (6.1), (6.4), (6.5) for problem 2 does not contain singularities. 

7. THE M O T I O N  OF P U N C H E S  ON THE ELASTIC M E D I U M  

The penetration of the punches into the elastic half-space is treated as the motion of absolutely rigid 
bodies and reduces to determining the motion of their centres of mass, which are situated on the axes 
of symmetry of the punches, that is, they axis. In that case, the motion of the punch may be considered 
as the motion of a point mass of mass rn. The differential equation of motion of the punch with initial 
conditions is [1, 2] 

mE(t) = Q(t), k(0) = v 0, E(0) = e0 (7.1) 

where Q(t), the force of elastic resistance of the medium to the penetration of the punch, is related to 
the force of contact action P(t) by the formula 

a a a 

Q(t) = IIJyy(x,O,t)dx =-I~p(x,t)dx =-P(t) ,  P(t)= fg(x, t )dx (7.2) 
-a -a -a 

where q0(x, t) are the contact stresses, given by formulae (6.1) for the problems is question. 
Thus, formula (7.2) can be used to determine Q(t). We shall now outline a briefer way to determine 

P(t). to determine P(t), one first finds pL(p) 

a 

pL(p) = S ~pL(x' p)dx 
-a 

(7.3) 

To do this, consider integral equation (1.5). Suppose a solution of that equation is known when the 
right-hand side has the form fC(x, p) = 1. Denote it by q~16(x,p). Multiply the left- and right-hand sides 
of Eq. (1.5) by a~pZd(x,p)dx and integrate the resulting equality with respect tox from -1 to 1. Inverting 
the order of integration and using the evenness of K(u) and the properties of q%L(x, p), we obtain the 
formulae 

1 1 
L pL(p) = a)~o i ~Po(x, p)dx + a~,l I L %(X, p)lxldx 

-1 -1 

for problem 1 (7.4) 

1 1 

pL(p) = a~.o I Cp~(x, p)dx + a~. 2 L I tPo(X' p)x2dx 
-1 -1 

for problem 2 (7.5) 
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Expression for Z0, )~1, ~"2 are given in (3.5) and (3.6). 
The aforementioned solution q~(x,p) of Eq. (1.5) for the case whenfL(x,p) = 1 is found by elementary 

means [1, 2] as the superposition (3.1), in which 

Vr = - m(u)e du + 
%(x,  p) teA/C(0) (7.6) 

L 1 
cp=(x, p) -- AK(0) 

The function re(u) was defined in formulae (5.1). Substituting q0~(x, p) into relations (7.4) and (7.5) 
and reverting from the Laplace transform to the original function, we obtain 

a-IpI'(P) = 0~0 + )~I)P~(P) - )~IApL+(P) + 2~'IAP~0(P) + (2)% + ~,I)A-IK-I(0) 
(7.7) 

for problem 1 

a-lpL(p)= (~,0 + ~1 )p1L(p) - 2~,IApL(p)+ 2~,IA2pL(p)+ (2~0+ ~,I)A-IK-I(0' 
(7.8) 

for problem 2 

where 

L -2 fm({ ' (1 -exp( -~2) )d~ ,  k =  1,2,3 Pk(P) = rcg_(o)~ ~2 ~, 

L 2 .~rn(~)(1 + 
P2+(P) = r~K_(0,~ ~2 \ exp(-{2))  d~ 

L 2 [ m(~) exp( ~ ~d~ e2o<p) :  -xj 

The function m(u) is given in (5.1) and ~ and ~'1 a re  given in (3.6). 
Reverting to the originals from/~(p) in relations (7.7) and (7.8), we obtain 

(aA)-lP(t) = 2t2K-1(0)(~(0) + e(0)) + 

+ p ie( t ) -  OlC2(t2Pl(t ) - P2+(t) + 2Pzo(t) + t~K-l(O)8(t)) for problem 1 
(7.9) 

where 

(aA)-l p(t) = 2t2K-l (o)(~(t) + e(O)) + 

2 3 -1 
+ ple(t)-O2c2Ct~Pl(t)- 2t2P2(t) + P3(t) + ~t2K (O)•(t)) for problem 2 

2 "m(~) .k- 1HI., pk( t )=  / ~ K T ( 0 ) ~ T ( ,  t t l - ( t - 2 ~ t 2 ) k - l H ( t ' 2 ~ t 2 ) ) d ~ ,  k =  1,2,3 

(7.10) 

pie(t) = 2 fm(~)rer t ) -  c ( t -  2~t2)H(t-  2~tz))d~, 
~K_(0)J ~ " " 

P2+(t) = 2 . ^ . I m ! ~ ) ( t H ( t ) + ( t - 2 ~ t 2 ) H ( t - 2 ~ t 2 ) ) d ~  
rc _/o) I~ ~ 
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2 7 m ( ~ ) ( t  
P2°(t) = T - ~ t 2 ) H ( t - ~ t 2 ) d ~  

tg - a/ck (k = 1, 2). A is as in (1.6), and 6(t) and H(t) are the Dirac delta function and the Heaviside 
function, respectively. 

To determine the signs of the motion of the punches e(t) in the solution of problems 1 and 2, formulae 
(7.9) and (7.10)just found for the function P(t) are substituted into the right-hand side of the ordinary 
differential equation (7.1) taking formulae (7.2) into consideration. The Volterra-type integrodifferential 
equation for the unknown function e(t) thus obtained for each of the problems contains one more 
unknown, a(t), which can be determined using the previously obtained additional conditions (6.8) and 
(6.9) for problems 1 and 2, respectively. 

In a numerical solution of the integrodifferential equations (7.1), (7.2), (7.9) and (7.10), at each step 
of the integration (the determination of e(t)) the value of the other unknown function a(t) corresponding 
to that particular instant of time is determined numerically as the root of algebraic equation (6.8) or 
(6.9) for problems 1 and 2, respectively, taking care at the same time to satisfy the natural initial condition 
a(0) = 0. This algorithm for solving the problem is fairly easy to implement in a MathCad environment. 
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